skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Afshari, Mohammad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work studies the behaviors of two large-population teams competing in a discrete environment. The team-level interactions are modeled as a zero-sum game while the agent dynamics within each team is formulated as a collaborative mean-field team problem. Drawing inspiration from the mean-field literature, we first approximate the large-population team game with its infinite-population limit. Subsequently, we construct a fictitious centralized system and transform the infinite-population game to an equivalent zero-sum game between two coordinators. Via a novel reachability analysis, we study the optimality of coordination strategies, which induce decentralized strategies under the original information structure. The optimality of the resulting strategies is established in the original finite-population game, and the theoretical guarantees are verified by numerical examples. 
    more » « less